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ABSTRACT 

The performances are evaluated of the inverse filters commonly used to eliminate poles 
and zeros from the transfer function of the calorimetric system. The analysis is carried out in 
frequency space, by means of the Z-transform. The algorithms are tested on models covering 
the full dynamic range attainable for heat conduction calorimeters. As relative scales are used 
for time and frequency, the results of the analysis can be applied in any experimental device. 

INTRODUCTION 

A study of the dynamic behaviour of several different calorimetric devices 
has shown that inverse filtering is a well-suited numerical tool to perform 
the identification of the system and the deconvolution of the thermograms. 
For example, inverse filtering has been used to obtain the instantaneous 
thermal power released during a thermally-induced martensitic transforma- 
tion or during continuous injection of the solute in a binary liquid mixture 
[l-4]. The generalization of inverse filtering to deal with deconvolution in 
time-varying systems has also been studied [5, and references therein]. 

Generally speaking, inverse filtering is applied in thermograms which are 
sampled with a sampling period At. The choice At = 7i/300, where 7i is the 
main time constant of the calorimeter, has been proposed [6]. The sampling 
of the thermogram leads, in the filtering process, to numerical algorithms in 

which the derivatives of the signal are replaced by finite differences; hence, 
the correction achieved is progressively different from what would be 
obtained applying an exact inverse filtering. In principle, the deconvolution 
could be performed by means of the Z-transform, which explicitly takes into 
account the discreteness of the thermogram. Unfortunately, the Z-transform 
presents serious. difficulties in dealing with time-varying systems. 
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A general analysis, showing to what extent the sampling of the thermo- 
gram affects the inverse filtering and giving conditions to choose properly 
the parameters entering the numerical algorithm has not, to our knowledge, 
been done before. In this paper, we study the performances of numerical 
inverse filtering depending on the different parameters that have to be 
chosen in the calculations and on the signal-to-noise ratio in the thermo- 
gram. The investigation covers the whole domain of work-in a relative 
scale [7]-of heat conduction calorimeters. 

NUMERICAL ALGORITHMS 

To eliminate the effect of the ith pole in the transfer function of the 
calorimeter, the appropriate inverse filter reads 

W) 
s’(t) = s(t) + 7’7 

where s(t) represents the thermogram, s’(t) the corrected signal and - l/~~ 
is the ith pole. As the thermogram is actually sampled every At, we express 
the derivatives in terms of finite differences 

s’(l) =.9(l) + Tl 
s(l+K)-s(l-K) 

2K.At 

Correspondingly, to eliminate the effect of the ith zero in the transfer 
function of the calorimeter, the inverse of eqn. (1) holds 

ds*( t) 
s(t) =s*(t) + 7,*7 

where now s(t) is again the thermogram, and s*(t) represents the signal 
after correction. The value - l/7,* corresponds to the i th zero. Writing the 
derivative in terms of left-shifted differences leads to the equivalent numeri- 
cal filter 

s(1) =s*(I) +7,* 
s*(I) - s*(I- K) 

KAt 

from where a recurrent relation for s*(I) is obtained directly. 
The preceding expressions show that the results of numerical inverse 

filtering will depend on the values 7, and 7: and on the values of K. Writing 
J = I + K in eqn. (2) we get 

s’(J-K)=s(J-K)+T, 
s(J)-s(J-iK) 

2KAt 

and applying the Z-transform 
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leads to 

z-“TZ[s’(J)] = TZ[s(J)]p+ 7,1;-;;K} 
Hence, the transfer function for the numerical inverse filter of a single pole 
reads 

TZ[S’(J)] =1+/-z-K 

m4J)I ’ 2KAt 

Following the same steps, the transfer function for the numerical inverse 
filter of a single zero is 

~zb*m KAt 

TZ[s(l)] = KAt + r,*(l -z-“) 
(6) 

Converting the Z-transforms into Fourier transforms we obtain the 

corresponding expressions in the frequency space 

44 - = 1 +jr; 
sin( wK. At) 

44 KAt (7) 

and 

s*b) KAt -= 
s(o) kAt + r,*[l - cos(oK. At) +j sin(wKAt)] 

(8) 

where j stands for the imaginary unit. 
From eqns. (7) and (8) it is possible to compare the results obtained from 

an exact filtering (the limiting values of the expressions above when (KAt) 
+ 0) with those given by the numerical filters actually used. 

RESULTS 

The effects of the numerical algorithms have been analysed on three 
different calorimetric models [8] which cover, in what concerns dynamic 
properties, the whole spectrum of heat-conduction calorimeters. Models M8 
and M9 have transfer functions which correspond to the two extreme 
dynamic behaviours, while model MI corresponds to an intermediate situa- 
tion. The parameters (poles and zeros) defining these models are given in 
Table 1. 

Generally speaking, not all the parameters in the transfer function of an 
actual calorimetric device pray an equally significant role. The noise in the 
thermograms results in a cut-off of the transfer function at high frequencies. 
In this sense, depending on the signal-to-noise ratio encountered in the 
thermograms, only partial models are required for a description of the 
calorimetric dynamics. The partial models that we have chosen (Table 2) are 
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TABLE 1 

Values for r, and T: defining the models MS, M9 and MI 

7, 7;” 
M8 192 49 18 - 4 2 1.2 0.4 0.3 - - 
MI 192 49 18 9 - - - _ 64 - 
M9 192 49 - 9 4 - 1.2 0.4 0.3 64 6 

TABLE 2 

Number of poles ( P) and zeros (z), adequate to represent the models M8 and M9 depending 
on the different signal-t~noi~ ratios 

s/n 40dB 60 dB SO dB 

M8 3P 3P 4P 
M9 4p, 21 5P, 2.2 6~9 22 

represented in Fig. 1A. In a non-rigorous way, it can be considered that for a 
signal-to-noise ratio s/n = 10L we have L = N - M, where N is the number 
of poles and M the number of zeros that can be filtered. 

The effect of K (the step in the finite-differences algorithm) has been 
studied from the divergences between the exact and the discrete filters. The 
divergences are given by the difference (in dB) between the modulus of the 
two transfer functions at the frequency under study. Table 3 gives the values 
of K that should be used when filtering a pole, to keep this difference in the 

a0 

d6 

Fig. 1. Moduli in dB, vs. a relative frequency scale, of the transfer functions corresponding to 
the filters given by the models M8, M9 and MI. (A) Model M8: (1) complete, (2) three poles, 
(3) four poles. Model M9: (4) complete, (5) four poles and two zeros, (6) five poles and two 
zeros. Model MI: (7) complete. (B) Model M8: (1) with three poles, (2) numerical approach 
using K = 6, (3) numerical approach using X = 14. Model MI: (4) complete, (5) numerical 
approach using K = 2, (6) numerical approach using X = 6. Model M9: (7) with five poles 
and two zeros, (8) numerical approach using K = 1, (9) numerical approach using K = 2. In 
all the partial models, the poles and zeros considered are the greater ones. 
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TABLE 3 

Maximum values of K, used in the numerical filtering of a pole and depending on the s/n in 
the thermograms, to obtain maximum divergences of (a) 2 dB or (b) 10 dB in the transfer 
function of the models given in Table 1 

M8 M9 MI 

a b a b a b 

40dB 14 32 4 15 1 6 
60 dB 6 14 2 6 1 2 
80 dB 2 6 1 2 - 1 

range 2-10 dB. An example, for a signal-to-noise ratio 60 dB, is shown in 
Fig. 1B. 

Table 3 also includes the results corresponding to a partial intermediate 
model MI described by the four main poles and one zero in Table 1. This 
model is such that for values of the moduli of the transfer function 40, 60 
and 80 dB, the corresponding frequencies are approximately the geometric 
mean between those of models M8 and M9. 

In what concerns the analysis of the phase of the transfer function, Fig. 
2A shows that the numerical filter does not introduce important modifica- 
tions below the frequencies considered. 

For the numerical integration (when filtering a zero) the optimum value 
of K to be used is always K = 1. Greater values give rise to a progressive 
divergence in the modulus and, especially, in the phase of the filter, as 
shown in Fig. 2B. 

1 10 a 1 10 J =I 
rad 

L 

LO . 

2 

I 0 

A B 
dB 

Fig. 2. Moduli in dB, vs. a relative frequency scale, of the transfer functions corresponding to 
a filter M9 with only the two main poles and the first zero. (A) Numerical approach of the 
filter, using K = 1 for the zero and the following values for the poles: (1) K = 1, (2) K = 4, (3) 
K = 8. (1’) (2’) and (3’) are the corresponding phases in rad. (B) Numerical approach of the 
filter, using K = 1 for the poles and the following values for the zero: (1) K = 1, (2) K = 4, (3) 
K = 8. (I’), (2’) and (3’) are the corresponding phases in rad. 
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CONCLUSIONS 

For the different signal-to-noise ratios, those values of the parameters in 
the numerical algorithms which lead to optimum inverse filters have been 
obtained. The differences in the moduli of the transfer function between the 
exact filter and the numerical one are, when using these values, either less 
than 2 dB or less than 10 dB. 

Standard numerical inverse filtering is an adequate deconvolution proce- 
dure for signal-to-noise ratios s/n < 80 dB. For larger ratios, however, a 
choice At < 7,/300 has to be considered. 

Correct results are obtained (in the ranges of ,2 or 10 dB, as specified in 
the text) in systems with s/n ranging from 40 to 60 dB, values usually found 
in actual experimental situations. For these systems, values of K between 1 
and 4 have to be used, the choice depending on the presence of zeros in their 
transfer function. 

For s/n < 40 dB it is no longer necessary to use At - 7,/300. Then, a 
value At = 7J60 is adequate 
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